logo pavel-mitichkin.ru PAVEL-MITICHKIN.RU | Личный кабинет | Наши Контакты | Доставка

Issouf Soumare Stochastic Simulation and Applications in Finance with MATLAB Programs


Stochastic Simulation and Applications in Finance with MATLAB Programs explains the fundamentals of Monte Carlo simulation techniques, their use in the numerical resolution of stochastic differential equations and their current applications in finance. Building on an integrated approach, it provides a pedagogical treatment of the need-to-know materials in risk management and financial engineering. The book takes readers through the basic concepts, covering the most recent research and problems in the area, including: the quadratic re-sampling technique, the Least Squared Method, the dynamic programming and Stratified State Aggregation technique to price American options, the extreme value simulation technique to price exotic options and the retrieval of volatility method to estimate Greeks. The authors also present modern term structure of interest rate models and pricing swaptions with the BGM market model, and give a full explanation of corporate securities valuation and credit risk based on the structural approach of Merton. Case studies on financial guarantees illustrate how to implement the simulation techniques in pricing and hedging. NOTE TO READER: The CD has been converted to URL. Go to the following website www.wiley.com/go/huyhnstochastic which provides MATLAB programs for the practical examples and case studies, which will give the reader confidence in using and adapting specific ways to solve problems involving stochastic processes in finance.

10180.43 RUR

похожие

Подробнее

Vigirdas Mackevicius Introduction to Stochastic Analysis. Integrals and Differential Equations


This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion processes. The topics covered include Brownian motion; motivation of stochastic models with Brownian motion; Itô and Stratonovich stochastic integrals, Itô’s formula; stochastic differential equations (SDEs); solutions of SDEs as Markov processes; application examples in physical sciences and finance; simulation of solutions of SDEs (strong and weak approximations). Exercises with hints and/or solutions are also provided.

8160.38 RUR

похожие

Подробнее

Stochastic Simulation and Applications in Finance with MATLAB Programs


Stochastic Simulation and Applications in Finance with MATLAB Programs explains the fundamentals of Monte Carlo simulation techniques, their use in the numerical resolution of stochastic differential equations and their current applications in finance. Building on an integrated approach, it provides a pedagogical treatment of the need-to-know materials in risk management and financial engineering. The book takes readers through the basic concepts, covering the most recent research and problems in the area, including: the quadratic re-sampling technique, the Least Squared Method, the dynamic programming and Stratified State Aggregation technique to price American options, the extreme value simulation technique to price exotic options and the retrieval of volatility method to estimate Greeks.The authors also present modern term structure of interest rate models and pricing swaptions with the BGM market model, and give a full explanation of corporate securities valuation and credit risk based on the structural approach of Merton. Case studies on financial guarantees illustrate how to implement the simulation techniques in pricing and hedging.

7020 RUR

Wiley похожие

Подробнее

Khaled Gharaibeh M. Nonlinear Distortion in Wireless Systems. Modeling and Simulation with MATLAB


This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems with stochastic inputs and establishes the performance metrics of communication systems with regard to nonlinearity. In addition, the author also discusses the problem of how to embed models of distortion in system-level simulators such as MATLAB and MATLAB Simulink and provides practical techniques that professionals can use on their own projects. Finally, the book explores simulation and programming issues and provides a comprehensive reference of simulation tools for nonlinearity in wireless communication systems. Key Features: Covers the theory, models and simulation tools needed for understanding nonlinearity and nonlinear distortion in wireless systems Presents simulation and modeling techniques for nonlinear distortion in wireless channels using MATLAB Uses random process theory to develop simulation tools for predicting nonlinear system performance with real-world wireless communication signals Focuses on simulation examples of real-world communication systems under nonlinearity Includes an accompanying website containing MATLAB code This book will be an invaluable reference for researchers, RF engineers, and communication system engineers working in the field. Graduate students and professors undertaking related courses will also find the book of interest.

10028.76 RUR

похожие

Подробнее

Khaled Gharaibeh M. Nonlinear Distortion in Wireless Systems. Modeling and Simulation with MATLAB


This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems with stochastic inputs and establishes the performance metrics of communication systems with regard to nonlinearity. In addition, the author also discusses the problem of how to embed models of distortion in system-level simulators such as MATLAB and MATLAB Simulink and provides practical techniques that professionals can use on their own projects. Finally, the book explores simulation and programming issues and provides a comprehensive reference of simulation tools for nonlinearity in wireless communication systems. Key Features: Covers the theory, models and simulation tools needed for understanding nonlinearity and nonlinear distortion in wireless systems Presents simulation and modeling techniques for nonlinear distortion in wireless channels using MATLAB Uses random process theory to develop simulation tools for predicting nonlinear system performance with real-world wireless communication signals Focuses on simulation examples of real-world communication systems under nonlinearity Includes an accompanying website containing MATLAB code This book will be an invaluable reference for researchers, RF engineers, and communication system engineers working in the field. Graduate students and professors undertaking related courses will also find the book of interest.

2132.61 RUR

похожие

Подробнее

Yuliya Mishura Theory and Statistical Applications of Stochastic Processes


This book is concerned with the theory of stochastic processes and the theoretical aspects of statistics for stochastic processes. It combines classic topics such as construction of stochastic processes, associated filtrations, processes with independent increments, Gaussian processes, martingales, Markov properties, continuity and related properties of trajectories with contemporary subjects: integration with respect to Gaussian processes, Itȏ integration, stochastic analysis, stochastic differential equations, fractional Brownian motion and parameter estimation in diffusion models.

11687.82 RUR

похожие

Подробнее

Pierre Borne Optimization in Engineering Sciences. Metaheuristic, Stochastic Methods and Decision Support


The purpose of this book is to present the main metaheuristics and approximate and stochastic methods for optimization of complex systems in Engineering Sciences. It has been written within the framework of the European Union project ERRIC (Empowering Romanian Research on Intelligent Information Technologies), which is funded by the EU’s FP7 Research Potential program and has been developed in co-operation between French and Romanian teaching researchers. Through the principles of various proposed algorithms (with additional references) this book allows the reader to explore various methods of implementation such as metaheuristics, local search and populationbased methods. It examines multi-objective and stochastic optimization, as well as methods and tools for computer-aided decision-making and simulation for decision-making.

13949.97 RUR

похожие

Подробнее

Robert Dobrow P. Introduction to Stochastic Processes with R


An introduction to stochastic processes through the use of R Introduction to Stochastic Processes with R is an accessible and well-balanced presentation of the theory of stochastic processes, with an emphasis on real-world applications of probability theory in the natural and social sciences. The use of simulation, by means of the popular statistical software R, makes theoretical results come alive with practical, hands-on demonstrations. Written by a highly-qualified expert in the field, the author presents numerous examples from a wide array of disciplines, which are used to illustrate concepts and highlight computational and theoretical results. Developing readers’ problem-solving skills and mathematical maturity, Introduction to Stochastic Processes with R features: More than 200 examples and 600 end-of-chapter exercises A tutorial for getting started with R, and appendices that contain review material in probability and matrix algebra Discussions of many timely and stimulating topics including Markov chain Monte Carlo, random walk on graphs, card shuffling, Black–Scholes options pricing, applications in biology and genetics, cryptography, martingales, and stochastic calculus Introductions to mathematics as needed in order to suit readers at many mathematical levels A companion web site that includes relevant data files as well as all R code and scripts used throughout the book Introduction to Stochastic Processes with R is an ideal textbook for an introductory course in stochastic processes. The book is aimed at undergraduate and beginning graduate-level students in the science, technology, engineering, and mathematics disciplines. The book is also an excellent reference for applied mathematicians and statisticians who are interested in a review of the topic.

9425.66 RUR

похожие

Подробнее

Ionut Florescu Probability and Stochastic Processes


A comprehensive and accessible presentation of probability and stochastic processes with emphasis on key theoretical concepts and real-world applications With a sophisticated approach, Probability and Stochastic Processes successfully balances theory and applications in a pedagogical and accessible format. The book’s primary focus is on key theoretical notions in probability to provide a foundation for understanding concepts and examples related to stochastic processes. Organized into two main sections, the book begins by developing probability theory with topical coverage on probability measure; random variables; integration theory; product spaces, conditional distribution, and conditional expectations; and limit theorems. The second part explores stochastic processes and related concepts including the Poisson process, renewal processes, Markov chains, semi-Markov processes, martingales, and Brownian motion. Featuring a logical combination of traditional and complex theories as well as practices, Probability and Stochastic Processes also includes: Multiple examples from disciplines such as business, mathematical finance, and engineering Chapter-by-chapter exercises and examples to allow readers to test their comprehension of the presented material A rigorous treatment of all probability and stochastic processes concepts An appropriate textbook for probability and stochastic processes courses at the upper-undergraduate and graduate level in mathematics, business, and electrical engineering, Probability and Stochastic Processes is also an ideal reference for researchers and practitioners in the fields of mathematics, engineering, and finance.

9425.66 RUR

похожие

Подробнее

Oliver Ibe C. Fundamentals of Stochastic Networks


An interdisciplinary approach to understanding queueing and graphical networks In today's era of interdisciplinary studies and research activities, network models are becoming increasingly important in various areas where they have not regularly been used. Combining techniques from stochastic processes and graph theory to analyze the behavior of networks, Fundamentals of Stochastic Networks provides an interdisciplinary approach by including practical applications of these stochastic networks in various fields of study, from engineering and operations management to communications and the physical sciences. The author uniquely unites different types of stochastic, queueing, and graphical networks that are typically studied independently of each other. With balanced coverage, the book is organized into three succinct parts: Part I introduces basic concepts in probability and stochastic processes, with coverage on counting, Poisson, renewal, and Markov processes Part II addresses basic queueing theory, with a focus on Markovian queueing systems and also explores advanced queueing theory, queueing networks, and approximations of queueing networks Part III focuses on graphical models, presenting an introduction to graph theory along with Bayesian, Boolean, and random networks The author presents the material in a self-contained style that helps readers apply the presented methods and techniques to science and engineering applications. Numerous practical examples are also provided throughout, including all related mathematical details. Featuring basic results without heavy emphasis on proving theorems, Fundamentals of Stochastic Networks is a suitable book for courses on probability and stochastic networks, stochastic network calculus, and stochastic network optimization at the upper-undergraduate and graduate levels. The book also serves as a reference for researchers and network professionals who would like to learn more about the general principles of stochastic networks.

11063.63 RUR

похожие

Подробнее

Dirk Kroese P. Simulation and the Monte Carlo Method


This accessible new edition explores the major topics in Monte Carlo simulation that have arisen over the past 30 years and presents a sound foundation for problem solving Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the state-of-the-art theory, methods and applications that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as importance (re-)sampling, and the transform likelihood ratio method, the score function method for sensitivity analysis, the stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization, the cross-entropy method for rare events estimation and combinatorial optimization, and application of Monte Carlo techniques for counting problems. An extensive range of exercises is provided at the end of each chapter, as well as a generous sampling of applied examples. The Third Edition features a new chapter on the highly versatile splitting method, with applications to rare-event estimation, counting, sampling, and optimization. A second new chapter introduces the stochastic enumeration method, which is a new fast sequential Monte Carlo method for tree search. In addition, the Third Edition features new material on: • Random number generation, including multiple-recursive generators and the Mersenne Twister • Simulation of Gaussian processes, Brownian motion, and diffusion processes • Multilevel Monte Carlo method • New enhancements of the cross-entropy (CE) method, including the “improved” CE method, which uses sampling from the zero-variance distribution to find the optimal importance sampling parameters • Over 100 algorithms in modern pseudo code with flow control • Over 25 new exercises Simulation and the Monte Carlo Method, Third Edition is an excellent text for upper-undergraduate and beginning graduate courses in stochastic simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method. Reuven Y. Rubinstein, DSc, was Professor Emeritus in the Faculty of Industrial Engineering and Management at Technion-Israel Institute of Technology. He served as a consultant at numerous large-scale organizations, such as IBM, Motorola, and NEC. The author of over 100 articles and six books, Dr. Rubinstein was also the inventor of the popular score-function method in simulation analysis and generic cross-entropy methods for combinatorial optimization and counting. Dirk P. Kroese, PhD, is a Professor of Mathematics and Statistics in the School of Mathematics and Physics of The University of Queensland, Australia. He has published over 100 articles and four books in a wide range of areas in applied probability and statistics, including Monte Carlo methods, cross-entropy, randomized algorithms, tele-traffic c theory, reliability, computational statistics, applied probability, and stochastic modeling.

9803.4 RUR

похожие

Подробнее

Josh Laurito Financial Simulation Modeling in Excel. A Step-by-Step Guide


I've worked with simulation in business for over 20 years, and Allman really nails it with this book. I admit that I own his previous book on structured finance cash flows, but I was surprised by what I found in here. He addresses the fundamental questions of how decision makers react to simulations and his read was very much in accordance with what I've experienced myself. When it came to the nuts and bolts of describing the different types of simulation analysis the book becomes incredibly detailed. There is working code and models for a fantastic array of the most common simulation problems. If you're so inclined, the book very carefully steps through the tricky math needed to really understand the theory behind stochastic modeling in finance. If you're preparing models that include any kind of randomization or stochastic modeling component, this book is a must-read, a tremendous value and time-saver. – David Brode of The Brode Group A practical guide to understanding and implementing financial simulation modeling As simulation techniques become more popular among the financial community and a variety of sub-industries, a thorough understanding of theory and implementation is critical for practitioners involved in portfolio management, risk management, pricing, and capital budgeting. Financial Simulation Modeling in Excel contains the information you need to make the most informed decisions possible in your professional endeavors. Financial Simulation Modeling in Excel contains a practical, hands-on approach to learning complex financial simulation methodologies using Excel and VBA as a medium. Crafted in an easy to understand format, this book is suitable for anyone with a basic understanding of finance and Excel. Filled with in-depth insights and expert advice, each chapter takes you through the theory behind a simulation topic and the implementation of that same topic in Excel/VBA in a step-by-step manner. Organized in an easy-to-follow fashion, this guide effectively walks you through the process of creating and implementing risk models in Excel A companion website contains all the Excel models risk experts and quantitative analysts need to practice and confirm their results as they progress Keith Allman is the author of other successful modeling books, including Corporate Valuation Modeling and Modeling Structured Finance Cash Flows with Microsoft Excel Created for those with some background in finance and experience in Excel, this reliable resource shows you how to effectively perform sound financial simulation modeling, even if you've yet to do extensive modeling up to this point in your professional or academic career.

6994.25 RUR

похожие

Подробнее

Pere Colet Stochastic Numerical Methods. An Introduction for Students and Scientists


Stochastic Numerical Methods introduces at Master level the numerical methods that use probability or stochastic concepts to analyze random processes. The book aims at being rather general and is addressed at students of natural sciences (Physics, Chemistry, Mathematics, Biology, etc.) and Engineering, but also social sciences (Economy, Sociology, etc.) where some of the techniques have been used recently to numerically simulate different agent-based models. Examples included in the book range from phase-transitions and critical phenomena, including details of data analysis (extraction of critical exponents, finite-size effects, etc.), to population dynamics, interfacial growth, chemical reactions, etc. Program listings are integrated in the discussion of numerical algorithms to facilitate their understanding. From the contents: Review of Probability Concepts Monte Carlo Integration Generation of Uniform and Non-uniform Random Numbers: Non-correlated Values Dynamical Methods Applications to Statistical Mechanics Introduction to Stochastic Processes Numerical Simulation of Ordinary and Partial Stochastic Differential Equations Introduction to Master Equations Numerical Simulations of Master Equations Hybrid Monte Carlo Generation of n-Dimensional Correlated Gaussian Variables Collective Algorithms for Spin Systems Histogram Extrapolation Multicanonical Simulations

8596.49 RUR

похожие

Подробнее

Paolo Brandimarte Handbook in Monte Carlo Simulation. Applications Financial Engineering, Risk Management, and Economics


An accessible treatment of Monte Carlo methods, techniques, and applications in the field of finance and economics Providing readers with an in-depth and comprehensive guide, the Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics presents a timely account of the applicationsof Monte Carlo methods in financial engineering and economics. Written by an international leading expert in thefield, the handbook illustrates the challenges confronting present-day financial practitioners and provides various applicationsof Monte Carlo techniques to answer these issues. The book is organized into five parts: introduction andmotivation; input analysis, modeling, and estimation; random variate and sample path generation; output analysisand variance reduction; and applications ranging from option pricing and risk management to optimization. The Handbook in Monte Carlo Simulation features: An introductory section for basic material on stochastic modeling and estimation aimed at readers who may need a summary or review of the essentials Carefully crafted examples in order to spot potential pitfalls and drawbacks of each approach An accessible treatment of advanced topics such as low-discrepancy sequences, stochastic optimization, dynamic programming, risk measures, and Markov chain Monte Carlo methods Numerous pieces of R code used to illustrate fundamental ideas in concrete terms and encourage experimentation The Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics is a complete reference for practitioners in the fields of finance, business, applied statistics, econometrics, and engineering, as well as a supplement for MBA and graduate-level courses on Monte Carlo methods and simulation.

11826.64 RUR

похожие

Подробнее

Marcin Kaminski The Stochastic Perturbation Method for Computational Mechanics


Probabilistic analysis is increasing in popularity and importance within engineering and the applied sciences. However, the stochastic perturbation technique is a fairly recent development and therefore remains as yet unknown to many students, researchers and engineers. Fields in which the methodology can be applied are widespread, including various branches of engineering, heat transfer and statistical mechanics, reliability assessment and also financial investments or economical prognosis in analytical and computational contexts. Stochastic Perturbation Method in Applied Sciences and Engineering is devoted to the theoretical aspects and computational implementation of the generalized stochastic perturbation technique. It is based on any order Taylor expansions of random variables and enables for determination of up to fourth order probabilistic moments and characteristics of the physical system response. Key features: Provides a grounding in the basic elements of statistics and probability and reliability engineering Describes the Stochastic Finite, Boundary Element and Finite Difference Methods, formulated according to the perturbation method Demonstrates dual computational implementation of the perturbation method with the use of Direct Differentiation Method and the Response Function Method Accompanied by a website (www.wiley.com/go/kaminski) with supporting stochastic numerical software Covers the computational implementation of the homogenization method for periodic composites with random and stochastic material properties Features case studies, numerical examples and practical applications Stochastic Perturbation Method in Applied Sciences and Engineering is a comprehensive reference for researchers and engineers, and is an ideal introduction to the subject for postgraduate and graduate students.

11063.63 RUR

похожие

Подробнее

Ankur A. Kulkarni TOPICS IN STOCHASTIC OPTIMIZATION


Stochastic programs form a class of optimization problems that have seen much attention in the last decade. As has the class of equilibrium problems which have resulted largely from the analytic treatment of Nash games. This thesis delves into some challenging areas of stochastic optimization and stochastic equilibrium programming. Our interest is in understanding properties of these problems and in developing algorithms for solving such problems. We first consider a two-period stochastic nonlinear program. In this context, we obtain new insights into the notions of feasibility and recourse for such programs and develop an algorithm based on sequential quadratic programming. The algorithm uses two quadratic programming solvers based on Benders decomposition: an inexact cut version of the L-shaped method and a trust-region method. We next consider stochastic equilibrium problems arising from Nash-Cournot competition, inspired by a Cournot bidding model for electricity markets. We first show existence and uniqueness of Nash equilibria to a wide class of stochastic quadratic games and then develop a splitting method that can be decomposed scenario-wise to compute such equilibria.

9314 RUR

похожие

Подробнее

Wang Yu Engineering Risk Assessment with Subset Simulation


This book starts with the basic ideas in uncertainty propagation using Monte Carlo methods and the generation of random variables and stochastic processes for some common distributions encountered in engineering applications. It then introduces a class of powerful simulation techniques called Markov Chain Monte Carlo method (MCMC), an important machinery behind Subset Simulation that allows one to generate samples for investigating rare scenarios in a probabilistically consistent manner. The theory of Subset Simulation is then presented, addressing related practical issues encountered in the actual implementation. The book also introduces the reader to probabilistic failure analysis and reliability-based sensitivity analysis, which are laid out in a context that can be efficiently tackled with Subset Simulation or Monte Carlo simulation in general. The book is supplemented with an Excel VBA code that provides a user-friendly tool for the reader to gain hands-on experience with Monte Carlo simulation. Presents a powerful simulation method called Subset Simulation for efficient engineering risk assessment and failure and sensitivity analysis Illustrates examples with MS Excel spreadsheets, allowing readers to gain hands-on experience with Monte Carlo simulation Covers theoretical fundamentals as well as advanced implementation issues A companion website is available to include the developments of the software ideas This book is essential reading for graduate students, researchers and engineers interested in applying Monte Carlo methods for risk assessment and reliability based design in various fields such as civil engineering, mechanical engineering, aerospace engineering, electrical engineering and nuclear engineering. Project managers, risk managers and financial engineers dealing with uncertainty effects may also find it useful.

10224.32 RUR

похожие

Подробнее

David Insua Bayesian Analysis of Stochastic Process Models


Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.

8743.15 RUR

похожие

Подробнее

Timothy Haas C. Introduction to Probability and Statistics for Ecosystem Managers. Simulation Resampling


Explores computer-intensive probability and statistics for ecosystem management decision making Simulation is an accessible way to explain probability and stochastic model behavior to beginners. This book introduces probability and statistics to future and practicing ecosystem managers by providing a comprehensive treatment of these two areas. The author presents a self-contained introduction for individuals involved in monitoring, assessing, and managing ecosystems and features intuitive, simulation-based explanations of probabilistic and statistical concepts. Mathematical programming details are provided for estimating ecosystem model parameters with Minimum Distance, a robust and computer-intensive method. The majority of examples illustrate how probability and statistics can be applied to ecosystem management challenges. There are over 50 exercises – making this book suitable for a lecture course in a natural resource and/or wildlife management department, or as the main text in a program of self-study. Key features: Reviews different approaches to wildlife and ecosystem management and inference. Uses simulation as an accessible way to explain probability and stochastic model behavior to beginners. Covers material from basic probability through to hierarchical Bayesian models and spatial/ spatio-temporal statistical inference. Provides detailed instructions for using R, along with complete R programs to recreate the output of the many examples presented. Provides an introduction to Geographic Information Systems (GIS) along with examples from Quantum GIS, a free GIS software package. A companion website featuring all R code and data used throughout the book. Solutions to all exercises are presented along with an online intelligent tutoring system that supports readers who are using the book for self-study.

8064.93 RUR

похожие

Подробнее

Guojun Gan Measure, Probability, and Mathematical Finance. A Problem-Oriented Approach


An introduction to the mathematical theory and financial models developed and used on Wall Street Providing both a theoretical and practical approach to the underlying mathematical theory behind financial models, Measure, Probability, and Mathematical Finance: A Problem-Oriented Approach presents important concepts and results in measure theory, probability theory, stochastic processes, and stochastic calculus. Measure theory is indispensable to the rigorous development of probability theory and is also necessary to properly address martingale measures, the change of numeraire theory, and LIBOR market models. In addition, probability theory is presented to facilitate the development of stochastic processes, including martingales and Brownian motions, while stochastic processes and stochastic calculus are discussed to model asset prices and develop derivative pricing models. The authors promote a problem-solving approach when applying mathematics in real-world situations, and readers are encouraged to address theorems and problems with mathematical rigor. In addition, Measure, Probability, and Mathematical Finance features: A comprehensive list of concepts and theorems from measure theory, probability theory, stochastic processes, and stochastic calculus Over 500 problems with hints and select solutions to reinforce basic concepts and important theorems Classic derivative pricing models in mathematical finance that have been developed and published since the seminal work of Black and Scholes Measure, Probability, and Mathematical Finance: A Problem-Oriented Approach is an ideal textbook for introductory quantitative courses in business, economics, and mathematical finance at the upper-undergraduate and graduate levels. The book is also a useful reference for readers who need to build their mathematical skills in order to better understand the mathematical theory of derivative pricing models.

10556.74 RUR

похожие

Подробнее

Eric Chin Problems and Solutions in Mathematical Finance. Stochastic Calculus


Mathematical finance requires the use of advanced mathematical techniques drawn from the theory of probability, stochastic processes and stochastic differential equations. These areas are generally introduced and developed at an abstract level, making it problematic when applying these techniques to practical issues in finance. Problems and Solutions in Mathematical Finance Volume I: Stochastic Calculus is the first of a four-volume set of books focusing on problems and solutions in mathematical finance. This volume introduces the reader to the basic stochastic calculus concepts required for the study of this important subject, providing a large number of worked examples which enable the reader to build the necessary foundation for more practical orientated problems in the later volumes. Through this application and by working through the numerous examples, the reader will properly understand and appreciate the fundamentals that underpin mathematical finance. Written mainly for students, industry practitioners and those involved in teaching in this field of study, Stochastic Calculus provides a valuable reference book to complement one’s further understanding of mathematical finance.

4132.97 RUR

похожие

Подробнее

Raid Al-Aomar Process Simulation Using WITNESS


Teaches basic and advanced modeling and simulation techniques to both undergraduate and postgraduate students and serves as a practical guide and manual for professionals learning how to build simulation models using WITNESS, a free-standing software package. This book discusses the theory behind simulation and demonstrates how to build simulation models with WITNESS. The book begins with an explanation of the concepts of simulation modeling and a “guided tour” of the WITNESS modeling environment. Next, the authors cover the basics of building simulation models using WITNESS and modeling of material-handling systems. After taking a brief tour in basic probability and statistics, simulation model input analysis is then examined in detail, including the importance and techniques of fitting closed-form distributions to observed data. Next, the authors present simulation output analysis including determining run controls and statistical analysis of simulation outputs and show how to use these techniques and others to undertake simulation model verification and validation. Effective techniques for managing a simulation project are analyzed, and case studies exemplifying the use of simulation in manufacturing and services are covered. Simulation-based optimization methods and the use of simulation to build and enhance lean systems are then discussed. Finally, the authors examine the interrelationships and synergy between simulation and Six Sigma. Emphasizes real-world applications of simulation modeling in both services and manufacturing sectors Discusses the role of simulation in Six Sigma projects and Lean Systems Contains examples in each chapter on the methods and concepts presented Process Simulation Using WITNESS is a resource for students, researchers, engineers, management consultants, and simulation trainers.

10933.76 RUR

похожие

Подробнее

Cho W. S. To Stochastic Structural Dynamics. Application of Finite Element Methods


One of the first books to provide in-depth and systematic application of finite element methods to the field of stochastic structural dynamics The parallel developments of the Finite Element Methods in the 1950’s and the engineering applications of stochastic processes in the 1940’s provided a combined numerical analysis tool for the studies of dynamics of structures and structural systems under random loadings. In the open literature, there are books on statistical dynamics of structures and books on structural dynamics with chapters dealing with random response analysis. However, a systematic treatment of stochastic structural dynamics applying the finite element methods seems to be lacking. Aimed at advanced and specialist levels, the author presents and illustrates analytical and direct integration methods for analyzing the statistics of the response of structures to stochastic loads. The analysis methods are based on structural models represented via the Finite Element Method. In addition to linear problems the text also addresses nonlinear problems and non-stationary random excitation with systems having large spatially stochastic property variations. A systematic treatment of stochastic structural dynamics applying the finite element methods Highly illustrated throughout and aimed at advanced and specialist levels, it focuses on computational aspects instead of theory Emphasizes results mainly in the time domain with limited contents in the time-frequency domain Presents and illustrates direction integration methods for analyzing the statistics of the response of linear and nonlinear structures to stochastic loads Under Author Information – one change of word to existing text: He is a Fellow of the American Society of Mechanical Engineers (ASME)........

11063.63 RUR

похожие

Подробнее

Alain Pirovano Networking Simulation for Intelligent Transportation Systems. High Mobile Wireless Nodes


This book studies the simulation of wireless networking in the domain of Intelligent Transportation Systems (ITS) involving aircraft, railway and vehicular communication. On this subject, particular focus is placed on effective communication channels, mobility modeling, multi-technology simulation and global ITS simulation frameworks. Networking Simulation for Intelligent Transportation Systems addresses the mixing of IEEE802.11p and LTE into a dedicated simulation environment as well as the links between ITS and IoT; aeronautical mobility and VHD Data Link (VDL) simulation; virtual co-simulation for railway communication and control-command; realistic channel simulation, mobility modeling and autonomic simulation for VANET and quality metrics for VANET. The authors intend for this book to be as useful as possible to the reader as they provide examples of methods and tools for running realistic and reliable simulations in the domain of communications for ITS.

9048.63 RUR

похожие

Подробнее

Moyal Pascal Stochastic Modeling and Analysis of Telecom Networks


This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems. The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an ergodic theoretical perspective is also provided, as well as spatial point processes. Using these basic tools, stability criteria, performance measures and comparison principles are obtained for a wide class of models, from the canonical M/M/1 and G/G/1 queues to more sophisticated systems, including the current “hot topics” of spatial radio networking, OFDMA and real-time networks. Contents 1. Introduction. Part 1: Discrete-time Modeling 2. Stochastic Recursive Sequences. 3. Markov Chains. 4. Stationary Queues. 5. The M/GI/1 Queue. Part 2: Continuous-time Modeling 6. Poisson Process. 7. Markov Process. 8. Systems with Delay. 9. Loss Systems. Part 3: Spatial Modeling 10. Spatial Point Processes.

15031.28 RUR

похожие

Подробнее

Michael Panik J. Stochastic Differential Equations. An Introduction with Applications in Population Dynamics Modeling


A beginner’s guide to stochastic growth modeling The chief advantage of stochastic growth models over deterministic models is that they combine both deterministic and stochastic elements of dynamic behaviors, such as weather, natural disasters, market fluctuations, and epidemics. This makes stochastic modeling a powerful tool in the hands of practitioners in fields for which population growth is a critical determinant of outcomes. However, the background requirements for studying SDEs can be daunting for those who lack the rigorous course of study received by math majors. Designed to be accessible to readers who have had only a few courses in calculus and statistics, this book offers a comprehensive review of the mathematical essentials needed to understand and apply stochastic growth models. In addition, the book describes deterministic and stochastic applications of population growth models including logistic, generalized logistic, Gompertz, negative exponential, and linear. Ideal for students and professionals in an array of fields including economics, population studies, environmental sciences, epidemiology, engineering, finance, and the biological sciences, Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: • Provides precise definitions of many important terms and concepts and provides many solved example problems • Highlights the interpretation of results and does not rely on a theorem-proof approach • Features comprehensive chapters addressing any background deficiencies readers may have and offers a comprehensive review for those who need a mathematics refresher • Emphasizes solution techniques for SDEs and their practical application to the development of stochastic population models An indispensable resource for students and practitioners with limited exposure to mathematics and statistics, Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling is an excellent fit for advanced undergraduates and beginning graduate students, as well as practitioners who need a gentle introduction to SDEs. Michael J. Panik, PhD, is Professor in the Department of Economics, Barney School of Business and Public Administration at the University of Hartford in Connecticut. He received his PhD in Economics from Boston College and is a member of the American Mathematical Society, The American Statistical Association, and The Econometric Society.

10180.43 RUR

похожие

Подробнее

Changyong Zhang Stochastic Differential Equations Driven by Levy Processes


Stochastic differential equations driven by Levy processes are used as mathematical models for random dynamic phenomena in applications arising from fields such as finance and insurance, to capture continuous and discontinuous uncertainty. For many applications, a stochastic differential equation does not have a closed-form solution and the weak Euler approximation is applied. In such numerical treatment of stochastic differential equations, it is of theoretical and practical importance to estimate the rate of convergence of the discrete time approximation. In this book, it is systematically investigated the dependence of the rate of convergence on the regularity of the coefficients and driving processes. The model under consideration is of a more general form than existing ones, and hence is applicable to a broader range of processes, from the widely-studied diffusions and stochastic differential equations driven by spherically-symmetric stable processes to stochastic differential equations driven by more general Levy processes. These processes can be found in a variety of fields, including physics, engineering, economics, and finance.

8914 RUR

похожие

Подробнее

Michelle Kelly Healthcare Simulation Education. Evidence, Theory and Practice


Written by a leading team from the Australian Society for Simulation in Healthcare (ASSH), Simulation Australasia, Healthcare Simulation Education is a new resource for a rapidly expanding professional healthcare simulation community. Designed as a core reference for educators who use simulation as an educational method, it outlines theory, evidence and research relevant to healthcare simulation. Containing examples of innovations from around the world, the book offers opportunities to make clear connections between the underlying rationale for the use of simulation, and what this looks like in practice. Healthcare Simulation Education: Helps readers gain a systematic understanding of theory and application of simulation Facilitates access to high quality resources to support healthcare simulation education and research Edited by a leading team from the Australian Society for Simulation in Healthcare (ASSH), the leading body for healthcare simulation in Australia Contains information on educational theory, the elements of simulation practice and contemporary issues in simulation An important text in healthcare literature and practice, Healthcare Simulation Education provides a unique cross-disciplinary overview of an innovative subject area, and is ideal for medical, nursing and allied health educators, policy makers and researchers.

5618.19 RUR

похожие

Подробнее

Xavier Descombes Stochastic Geometry for Image Analysis


This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.

12589.65 RUR

похожие

Подробнее

Chen YangQuan System Simulation Techniques with MATLAB and Simulink


System Simulation Techniques with MATLAB and Simulink comprehensively explains how to use MATLAB and Simulink to perform dynamic systems simulation tasks for engineering and non-engineering applications. This book begins with covering the fundamentals of MATLAB programming and applications, and the solutions to different mathematical problems in simulation. The fundamentals of Simulink modelling and simulation are then presented, followed by coverage of intermediate level modelling skills and more advanced techniques in Simulink modelling and applications. Finally the modelling and simulation of engineering and non-engineering systems are presented. The areas covered include electrical, electronic systems, mechanical systems, pharmacokinetic systems, video and image processing systems and discrete event systems. Hardware-in-the-loop simulation and real-time application are also discussed. Key features: Progressive building of simulation skills using Simulink, from basics through to advanced levels, with illustrations and examples Wide coverage of simulation topics of applications from engineering to non-engineering systems Dedicated chapter on hardware-in-the-loop simulation and real time control End of chapter exercises A companion website hosting a solution manual and powerpoint slides System Simulation Techniques with MATLAB and Simulink is a suitable textbook for senior undergraduate/postgraduate courses covering modelling and simulation, and is also an ideal reference for researchers and practitioners in industry.

9766.52 RUR

похожие

Подробнее

Tuncer Oren Agent-Directed Simulation and Systems Engineering


The only book to present the synergy between modeling and simulation, systems engineering, and agent technologies expands the notion of agent-based simulation to also deal with agent simulation and agent-supported simulation. Accessible to both practitioners and managers, it systematically addresses designing and building agent systems from a systems engineering perspective.

18541.12 RUR

похожие

Подробнее

B. L. S. Prakasa Rao Statistical Inference for Fractional Diffusion Processes


Stochastic processes are widely used for model building in the social, physical, engineering and life sciences as well as in financial economics. In model building, statistical inference for stochastic processes is of great importance from both a theoretical and an applications point of view. This book deals with Fractional Diffusion Processes and statistical inference for such stochastic processes. The main focus of the book is to consider parametric and nonparametric inference problems for fractional diffusion processes when a complete path of the process over a finite interval is observable. Key features: Introduces self-similar processes, fractional Brownian motion and stochastic integration with respect to fractional Brownian motion. Provides a comprehensive review of statistical inference for processes driven by fractional Brownian motion for modelling long range dependence. Presents a study of parametric and nonparametric inference problems for the fractional diffusion process. Discusses the fractional Brownian sheet and infinite dimensional fractional Brownian motion. Includes recent results and developments in the area of statistical inference of fractional diffusion processes. Researchers and students working on the statistics of fractional diffusion processes and applied mathematicians and statisticians involved in stochastic process modelling will benefit from this book.

9842.82 RUR

похожие

Подробнее

Mike Davis How to Teach Using Simulation in Healthcare


How to Teach Using Simulation in Healthcare provides an ideal introduction and easy-to-use guide to simulation in medical education. Written by a team of experienced medical educators, this practical text – packed full of case examples and tips – is underpinned by the theory of simulation in education, and explores how to integrate simulation into teaching. Key topics include: Use of low, medium and high fidelity equipment Issues of simulation mapping and scenario design Role of human factors Formative and summative assessment New social media and technologies Detailed explorations of some examples of simulation. How to Teach Using Simulation in Healthcare is invaluable reading for all healthcare professionals interested and involved in the origins, theoretical underpinnings, and design implications of the use of simulation in medical education.

3995.62 RUR

похожие

Подробнее

Financial Optimization


The use of mathematical models in financial management is today common business practice. The state of the art is constantly being advanced by academia and refined by industry. This book achieves two objectives. First, it brings together the (apparently)diverse fields of finance and management science/operations research. It presents a variety of techniques used in complex problems for financial management: optimization, simulation, stochastic programming and supercomputing. Second, it links current industrial practices with academic research to a degree unparalleled by any previous publication in the field.

3104 RUR

Cambridge University Press похожие

Подробнее

Viswanathan Arunachalam Introduction to Probability and Stochastic Processes with Applications


An easily accessible, real-world approach to probability and stochastic processes Introduction to Probability and Stochastic Processes with Applications presents a clear, easy-to-understand treatment of probability and stochastic processes, providing readers with a solid foundation they can build upon throughout their careers. With an emphasis on applications in engineering, applied sciences, business and finance, statistics, mathematics, and operations research, the book features numerous real-world examples that illustrate how random phenomena occur in nature and how to use probabilistic techniques to accurately model these phenomena. The authors discuss a broad range of topics, from the basic concepts of probability to advanced topics for further study, including Itô integrals, martingales, and sigma algebras. Additional topical coverage includes: Distributions of discrete and continuous random variables frequently used in applications Random vectors, conditional probability, expectation, and multivariate normal distributions The laws of large numbers, limit theorems, and convergence of sequences of random variables Stochastic processes and related applications, particularly in queueing systems Financial mathematics, including pricing methods such as risk-neutral valuation and the Black-Scholes formula Extensive appendices containing a review of the requisite mathematics and tables of standard distributions for use in applications are provided, and plentiful exercises, problems, and solutions are found throughout. Also, a related website features additional exercises with solutions and supplementary material for classroom use. Introduction to Probability and Stochastic Processes with Applications is an ideal book for probability courses at the upper-undergraduate level. The book is also a valuable reference for researchers and practitioners in the fields of engineering, operations research, and computer science who conduct data analysis to make decisions in their everyday work.

10330.66 RUR

похожие

Подробнее

Cho W. S. To Introduction to Dynamics and Control in Mechanical Engineering Systems


One of the first books to provide in-depth and systematic application of finite element methods to the field of stochastic structural dynamics The parallel developments of the Finite Element Methods in the 1950’s and the engineering applications of stochastic processes in the 1940’s provided a combined numerical analysis tool for the studies of dynamics of structures and structural systems under random loadings. In the open literature, there are books on statistical dynamics of structures and books on structural dynamics with chapters dealing with random response analysis. However, a systematic treatment of stochastic structural dynamics applying the finite element methods seems to be lacking. Aimed at advanced and specialist levels, the author presents and illustrates analytical and direct integration methods for analyzing the statistics of the response of structures to stochastic loads. The analysis methods are based on structural models represented via the Finite Element Method. In addition to linear problems the text also addresses nonlinear problems and non-stationary random excitation with systems having large spatially stochastic property variations.

7778.05 RUR

похожие

Подробнее

Ngai Chan Hang Simulation Techniques in Financial Risk Management


Praise for the First Edition “…a nice, self-contained introduction to simulation and computational techniques in finance…” – Mathematical Reviews Simulation Techniques in Financial Risk Management, Second Edition takes a unique approach to the field of simulations by focusing on techniques necessary in the fields of finance and risk management. Thoroughly updated, the new edition expands on several key topics in these areas and presents many of the recent innovations in simulations and risk management, such as advanced option pricing models beyond the Black–Scholes paradigm, interest rate models, MCMC methods including stochastic volatility models simulations, model assets and model-free properties, jump diffusion, and state space modeling. The Second Edition also features: Updates to primary software used throughout the book, Microsoft Office® Excel® VBA New topical coverage on multiple assets, model-free properties, and related models More than 300 exercises at the end of each chapter, with select answers in the appendix, to help readers apply new concepts and test their understanding Extensive use of examples to illustrate how to use simulation techniques in risk management Practical case studies, such as the pricing of exotic options; simulations of Greeks in hedging; and the use of Bayesian ideas to assess the impact of jumps, so readers can reproduce the results of the studies A related website with additional solutions to problems within the book as well as Excel VBA and S-Plus computer code for many of the examples within the book Simulation Techniques in Financial Risk Management, Second Edition is an invaluable resource for risk managers in the financial and actuarial industries as well as a useful reference for readers interested in learning how to better gauge risk and make more informed decisions. The book is also ideal for upper-undergraduate and graduate-level courses in simulation and risk management.

8671.61 RUR

похожие

Подробнее

Комментарии покупателей


#smart air quality monitor laser egg #shadow sh 0210 16 #антигель дизельный eltrans 340мл #power over ethernet kit poe 48v #free shipping great big 22mm purple #xiuteng women flat shoes woman handmade #dmwd new ultrasonic humidifier home #platform wedges high heel open toe woman #hask питательный кондиционер с кокосовым #fast shipping sex testes full silicone #hask шампунь с экстрактом голубой #русско молдавский разговорник #1pc wooden teethers nature baby teething #hask coconut oil питательный шампунь с #hask macadamia oil увлажняющий #bexin heavy duty carbon fiber gimbal #топсайдеры airbox mp002xm0yiv3 #vanaxin hip hop rings for men iced out #nixon часы a450 2304 коллекция sentry #hask macadamia oil увлажняющая маска с #17 5028 #вафли коломенское с орехами 200 г #ce approved home application off grid #платье prima linea mp002xw0yhzc #мембрана unipump 35л epdm #domo крышка domo 20 см d47wa2000 #hask coconut water шампунь с кокосовой #энап нl 12 5 мг плюс 20 60 табл #hanriver cervical massage device neck #zhenzu breathable running shoes for man #набор кистей 10 шт плос 3 4 2 круг #макиенко е английский язык 3 класс #mresist mox 5w 1 5 ohm #кухонная мойка omoikiri bosen 59 2 sa #leisure rocking chair solid wood folding


Подпишитесь на новинки товаров в pavel-mitichkin.ru